의사 역(Pseudo inverse)

$$ T^\dag(\bold{y}) = \begin{cases} L^{-1}(\bold{y}) & \bold{y} \in R(T) \\ \bold{0} & \bold{y} \in R(T)^\bot \end{cases} $$

$$ (L_\bold{A})^\dag = L_{\bold{A}^\dag} $$

$$ \boldsymbol{\Sigma}_{ij}^\dag = \begin{cases} {1 \over \sigma_i} & (i = j \le r) \\ 0 & \text{otherwise} \end{cases} $$

$$ \begin{aligned} \bold{AA}^\dag\bold{A} &= \bold{A} \\ \bold{A}^\dag\bold{A}\bold{A}^\dag &= \bold{A}^\dag \\ (\bold{A}\bold{A}^\dag)^T &= \bold{A}\bold{A}^\dag \\ (\bold{A}^\dag\bold{A})^T &= \bold{A}^\dag\bold{A} \end{aligned} $$

$$ \bold{A}^\dag = (\bold{A}^\top\bold{A})^{-1}\bold{A}^\top $$

$$ \bold{A}^\dag\bold{A} = (\bold{A}^\top\bold{A})^{-1}\bold{A}^\top\bold{A} = \bold{I} $$

$$ \bold{A}^\dag = \bold{A}^\top(\bold{AA}^\top)^{-1} $$