2차 정사각 행렬의 행렬식

$$ \det \left( \begin{matrix} \bold{u} + k\bold{v} \\ \bold{w} \end{matrix} \right) = \det \left( \begin{matrix} \bold{u} \\ \bold{w} \end{matrix} \right) + k \det \left( \begin{matrix} \bold{v} \\ \bold{w} \end{matrix} \right) \\ \det \left( \begin{matrix} \bold{w} \\ \bold{u} + k \bold{v} \end{matrix} \right) = \det \left( \begin{matrix} \bold{w} \\ \bold{u} \end{matrix} \right) + k \det \left( \begin{matrix} \bold{w} \\ \bold{v} \end{matrix} \right) $$

$$ \bold{A}^{-1} = {1 \over \det (\bold{A})} \left( \begin{matrix} A_{22} & -A_{12} \\ -A_{21} & A_{11} \end{matrix} \right) $$

n차 정사각 행렬의 행렬식

$$ \det(\bold{A}) = \begin{cases} A_{11} & n = 1 \\ \sum_{j=1}^{n} (-1)^{1+j} A_{1j} \cdot \det(\tilde{A}_{1j}) & n \geq 2 \end{cases} $$

$$ \det(\bold{A}) = A_{11} c_{11} + A_{12} c_{12} + ... + A_{1n} c_{1n} $$

$$ \det \left( \begin{matrix} \bold{a}{1} \\ \vdots \\ \bold{a}{r-1} \\ \bold{u} + k\bold{v} \\ \bold{a}{r+1} \\ \vdots \\ \bold{a}n \end{matrix} \right) = \det \left( \begin{matrix} \bold{a}{1} \\ \vdots \\ \bold{a}{r-1} \\ \bold{u} \\ \bold{a}{r+1} \\ \vdots \\ \bold{a}n \end{matrix} \right) +k \det \left( \begin{matrix} \bold{a}{1} \\ \vdots \\ \bold{a}{r-1} \\ \bold{v} \\ \bold{a}_{r+1} \\ \vdots \\ \bold{a}_n \end{matrix} \right) $$