전치 행렬(Transpose Matrix)

$$ \bold{A}{ij} = (\bold{A}^\top){ji} $$

$$ \begin{aligned} (AB)^\top &= B^\top A^\top \\ (ABC)^\top &= C^\top B^\top A^\top \\ (ABCD)^\top &= D^\top C^\top B^\top A^\top \end{aligned} $$

역 행렬(Inverse Matrix)

$$ \bold{A}^{-1}\bold{A} = \bold{AA}^{-1} = \bold{I} $$

$$ \begin{aligned} (\bold{A}^{-1})^{-1} &= \bold{A} \\ (\bold{AB})^{-1} &= \bold{B}^{-1}\bold{A}^{-1} \\ (\bold{A}^{-1})^\top &= (\bold{A}^\top)^{-1} \triangleq \bold{A}^{-\top} \end{aligned} $$

$$ (\bold{ABCD})^{-1} = \bold{D}^{-1}\bold{C}^{-1}\bold{B}^{-1}\bold{A}^{-1} $$

$$ \left(\begin{matrix} \bold{A} & \bold{0} \\ \bold{0} & \bold{A} \end{matrix}\right)^{-1} = \left(\begin{matrix} \bold{A}^{-1} & \bold{0} \\ \bold{0} & \bold{B}^{-1} \end{matrix}\right) $$

직교(Orthogonal) 행렬

$$ \bold{A}^\top\bold{A} = \bold{AA}^\top = \bold{I} $$