대각합(Trace)

$$ \text{tr}(\bold{A}) = \sum_{i=1}^{n} A_{ii} $$

$$ \begin{aligned} \text{tr}(\bold{A}) &= \text{tr}(\bold{A}^\top) \\ \text{tr}(\bold{A} + \bold{B}) &= \text{tr}(\bold{A}) + \text{tr}(\bold{B}) \\ \text{tr}(c\bold{A}) &= c \cdot \text{tr}(\bold{A}) \\ \text{tr}(\bold{A}\bold{B}) &= \text{tr}(\bold{B}\bold{A}) \\ \text{tr}(\bold{A}) &= \sum_{i=1}^{n} \lambda_i \ (\text{where } \lambda_i \text{ are the eigenvalues of } \bold{A})\end{aligned} $$

$$ \text{tr}(\bold{ABC}) = \text{tr}(\bold{BCA}) = \text{tr}(\bold{CAB}) $$

$$ \bold{x}^\top \bold{A} \bold{x} = \text{tr}(\bold{x}^\top \bold{A} \bold{x}) = \text{tr}(\bold{x}\bold{x}^\top \bold{A}) $$

$$ \text{tr}(\bold{A}) = \text{tr}(\bold{A} \mathbb{E}[\bold{v}\bold{v}^\top]) = \mathbb{E}[\text{tr}(\bold{A}\bold{v}\bold{v}^\top)] = \mathbb{E}[\text{tr}(\bold{v}^\top\bold{A}\bold{v})] = \mathbb{E}[\bold{v}^\top\bold{A}\bold{v}] $$

행렬 노름(matrix norm)

$$ \|\bold{A}\|p = \max{\bold{x} \neq 0} {\|\bold{A} \bold{x}\|_p \over \|\bold{x}\|p} = \max{\|\bold{x}\| = 1}\|\bold{A}\bold{x}\|_p $$

$$ \|\bold{A}\|2 = \sqrt{\lambda{\max}(\bold{A}^\top\bold{A})} = \max_i \sigma_i $$