Linear Gaussian systems

$$ \begin{aligned} p(\bold{z}) &= \mathcal{N}(\bold{z}|\stackrel{\smile}{\boldsymbol{\mu}},\stackrel{\smile}{\boldsymbol{\Sigma}} ) \\ p(\bold{y}|\bold{z}) &= \mathcal{N}(\bold{y}|\bold{Wz} + \bold{b}, \boldsymbol{\Omega})\end{aligned} $$

Joint distribution

$$ \begin{aligned} p(\bold{z}, \bold{y}) &= \mathcal{N}(\bold{z}, \bold{y}|\tilde{\boldsymbol{\mu}},\tilde{\boldsymbol{\Sigma}} ) \\ \tilde{\boldsymbol{\mu}} &\triangleq \begin{pmatrix}\stackrel{\smile}{\boldsymbol{\mu}} \\ \bold{m}\end{pmatrix} \triangleq \begin{pmatrix} \stackrel{\smile}{\boldsymbol{\mu}} \\ \bold{W}\stackrel{\smile}{\boldsymbol{\mu}} + \bold{b} \end{pmatrix} \\ \tilde{\boldsymbol{\Sigma}} &\triangleq \begin{pmatrix} \stackrel{\smile}{\boldsymbol{\Sigma}} & \bold{C}^\top \\ \bold{C} & \bold{S} \end{pmatrix} \triangleq \begin{pmatrix} \stackrel{\smile}{\boldsymbol{\Sigma}} & \stackrel{\smile}{\boldsymbol{\Sigma}}\bold{W}^\top \\ \bold{W}\stackrel{\smile}{\boldsymbol{\Sigma}} & \bold{W}\stackrel{\smile}{\boldsymbol{\Sigma}}\bold{W}^\top + \boldsymbol{\Omega} \end{pmatrix} \end{aligned} $$

Posterior distribution (Bayes’ rule for Gaussians)

$$ \begin{aligned} p(\bold{z}|\bold{y}) &= \mathcal{N}(\bold{z}|\stackrel{\frown}{\boldsymbol{\mu}},\stackrel{\frown}{\boldsymbol{\Sigma}} ) \\ \stackrel{\frown}{\boldsymbol{\mu}} &= \stackrel{\smile}{\boldsymbol{\mu}} + \stackrel{\smile}{\boldsymbol{\Sigma}}\bold{W}^\top(\boldsymbol{\Omega}+\bold{W}\stackrel{\smile}{\boldsymbol{\Sigma}}\bold{W}^\top)^{-1}(\bold{y}-(\bold{W}\stackrel{\smile}{\boldsymbol{\mu}} + \bold{b})) \\ \stackrel{\frown}{\boldsymbol{\Sigma}} &= \stackrel{\smile}{\boldsymbol{\Sigma}}-\stackrel{\smile}{\boldsymbol{\Sigma}}\bold{W}^\top(\boldsymbol{\Omega} + \bold{W}\stackrel{\smile}{\boldsymbol{\Sigma}}\bold{W}^\top)^{-1}\bold{W}\stackrel{\smile}{\boldsymbol{\Sigma}}\end{aligned} $$

$$ \bold{K} = \bold{CS}^{-1} $$

$$ \begin{aligned} \stackrel{\frown}{\boldsymbol{\mu}} &= \stackrel{\smile}{\boldsymbol{\mu}} + \bold{K}(\bold{y}-\bold{m}) \\ \stackrel{\frown}{\boldsymbol{\Sigma}} &= \stackrel{\smile}{\boldsymbol{\Sigma}}-\bold{KC}^\top\end{aligned} $$

$$ \bold{KSK}^\top = \bold{CS}^{-1}\bold{SS}^{-\top}\bold{C}^\top = \bold{CS}^{-1}\bold{C}^\top = \bold{KC}^\top $$