Invertible transformations (bijections)

$$ p_y(\bold{y}) = p_x(f^{-1}(\bold{y}))|\det[\bold{J}_{f^{-1}}(\bold{y})]| $$

$$ \bold{J}_{f^{-1}}(\bold{y}) = \begin{pmatrix} {\partial x_1 \over \partial y_1} & \dots & {\partial x_1 \over \partial y_n} \\ & \vdots & \\ {\partial x_n \over \partial y_1} & \dots & {\partial x_n \over \partial y_n}\end{pmatrix} $$

$$ \det(\bold{J}) = \prod_{i=1}^n {\partial x_i \over \partial y_i} $$

Monte Carlo approximation

$$ p_\mathcal{D}(\bold{y}) = {1\over S} \sum_{s=1}^S \delta(\bold{y} - \bold{y}^s) $$

Probability integral transform

$$ \begin{aligned} P_Y(y) &= \text{Pr}(Y \ge y) = \text{Pr}(P_X(X) \le y) \\ &= \text{Pr}(X \le P_X^{-1}(y)) = P_X(P_X^{-1}(y)) = y \end{aligned} $$

Cap 2023-12-14 09-32-12-704.png

Cap 2023-12-14 09-37-32-079.png